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The asymptotic form of the laminar boundary-layer 
mass-transfer rate for large interfacial velocities 

By ANDREAS ACRIVOS 
Department of Chemical Engineering, University of California, Berkeley 

(Received 23 June 1961) 

The convective diffusion of matter from a stationary object to a moving fluid 
stream is distinct from pure heat transfer because of the appearance of a finite 
interfacial velocity at  the solid surface. This velocity is related to the rate of 
mass transfer by a dimensionless group B in such a way that for - 1 < B < 0 
the transfer is from the bulk to the surface while for 0 < B < 00 the transfer is 
from the surface to the main stream. In this paper, asymptotic solutions to the 
two-dimensional laminar boundary-layer equations are developed for the case 
B B 1, and for rather general systems. It is shown that in most instances the 
asymptotic expressions for the rate of mass transfer become accurate when 
B > 3 and that the transition region between the pure heat-transfer analogy 
( B  N 0) and the B 9 1 asymptote may be described by a simple graphical inter- 
polation. These results may easily be extended to three-dimensional surfaces of 
revolution by the usual co-ordinate transformations of boundary-layer theory. 

1. Introduction and basic equations 
It is well known by now that, although it is possible to consider heat and mass 

transfer as completely analogous phenomena under certain special conditions, 
there are important fundamental differences between these two processes which 
in general must be taken into account. It has been repeatedly demonstrated, 
for example, that in the rather common case of mass or heat exchange taking 
place separately between a stationary surface and a moving fluid, the rate of 
mass transfer may be appreciably different from the rate of heat exchange, even 
for systems with identical external flow configurations and transport para- 
meters. This is so for the following reason: if the fluid is assumed to have constant 
properties, then the equations of motion remain uninfluenced by the heat transfer 
process. In  the case of mass exchange, however, the surface plays the additional 
role of acting either as a source or as a sink of material, with the result that a net 
hydrodynamic velocity normal to the solid-fluid interface is thereby established. 
It is quite clear, therefore, that if this interfacial velocity is appreciable in magni- 
tude it can cause a distortion in the velocity profile which would normally exist 
in the absence of mass exchange, and thus substantially affect the transfer rate 
of matter. One can conclude then that, even though an analogy could still exist 
under certain circumstances if the two processes were to take place simul- 
taneously, pure heat transfer and mass transfer will in general not obey the same 
mathematical relations and will have therefore to be studied separately. It is 
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the purpose of this article to investigate this point theoretically for laminar 
boundary-layer flows and to show under what conditions one can expect this 
interfacial velocity to play a significant role and to affect the often postulated 
analogy between pure heat transfer and mass exchange. 

The usual two-dimensional laminar boundary-layer equations of continuity, 
momentum and mass transfer will now be used as our starting-point. We have, in 
conventional boundary-layer notation and for a constant-property fluid 
(Schlichting 1960), that 

-+- = 0, (1) 
au av 
ax ay 

au au du a2u 
u-+v- = u-+-, ax ay ax  ay2 

ae ae 1 a2e 

ax ay ~ c a p  
u-+v- = -- (3) 

where for simplicity both dimensionless and stretched laminar boundary-layer 
co-ordinates have been employed. In  other words, if U,, L and v are respectively 
the characteristic velocity, the characteristic length and the kinematic viscosity 
of the system, then 

x = (distance along surface)/L, 

y = (U, L/v)) (distance normal to surface)/L, 

u = (velocity component along x)/U,, 

v = (U,L/v)) (velocity component along y)/U,. 

Similarly, Sc is the standard Schmidt number v/D, U(x) is the dimensionless 
potential-flow distribution at the edge of the boundary layer, and 8 is the dimen- 
sionless ‘concentration ’ ( W - W,)/(W, - W,), where W is the weight fraction of 
the diffusing species and where the subscripts s and co refer, respectively, to the 
surface and to the bulk. The mathematical system is finally made determinate 
by specifying the appropriate boundary conditions (Eckert & Drake 1959) : 

u = U(x), 8 = 0 at y = co, x = 0 ;  u = 0,  0 = 1 at y = 0;  (4) 

and at y = 0,  
B ae 
SC ay 

‘u = _-- (5) 

where B = (W,-Wm)/(1-%). (6) 

It should be carefully noted at this point that the mathematical model is not 
entirely general, but that it must satisfy a number of restrictions. It is obvious 
first of all that the Reynolds number (U, Llv) must be sufficiently large for the 
boundary-layer equations to hold and that the fluid properties, density, viscosity 
and diffusion coefficient, must be independent of composition. It must also be 
kept in mind that the equations, as written, are applicable only to a binary 
mixture consisting of one transferring species and an inert substance and not 
to the more complicated case of multi-component mass transfer which we shall 
not consider at this time. And finally, it  should be realized that the analysis will 
be limited to those cases where the interfacial velocity, although large enough 
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to affect the velocity profile inside the boundary layer, will not be so large as to 
cause a change in the pressure distribution around the surface, so that the func- 
tion U ( x )  appearing in equation (2) will still be given by the inviscid flow theory 
in the absence of mass exchange. As can easily be shown, this assumption is 
permissible as long as the Reynolds number is sufficiently large (Acrivos 1 9 6 0 ~ ) .  

It is appropriate now to consider briefly equation (5) which expresses the 
normal velocity component at the solid-fluid surface in terms of the rate of 
transfer of the diffusing species. It has been repeatedly established in the past 
that equation (5) can be derived in a straightforward manner (Spalding 1954; 
Eckert & Drake 1959) from the requirement that the net rate of inert transfer 
into the surface be zero, since the solid interface is assumed to act either as a 
source or a sink for the diffusing species alone. In  addition, as has already been 
pointed out by Spalding (1960) and Merk (1959b), this interfacial velocity is 
intimately connected to the dimensionless group B, defined by equation (6), 
which in a sense provides us with a qualitative measure of the relative im- 
portance of the coupling between momentum and mass transfer. In  other words, 
if B - 0, then the system of equations would become indentical with that 
describing pure energy transfer in the absence of mass exchange, except that the 
Schmidt number in equation (3) would have to be replaced by the Prandtl 
number. This would mean then that only if B N 0 would one expect the analogy 
between pure heat transfer and mass exchange to hold, and that even for moder- 
ate values of this parameter one would have to consider these two operations 
as fundamentally distinct. 

In  the general case then, B + 0 with - 1 < B < 0 if the exchange process is 
from the bulk to the surface, and 0 < B < co if the transfer is from the surface 
to  the main stream. This in turn not only complicates one of the boundary 
conditions in the manner already explained but it does introduce a modification 
in the expression for the mass flux of the diffusing species at  the surface. In  other 
words, if the symbolj is used to denote the rate of transfer at  the solid interface 
of the diffusing substance, in g/sec om2, then in view of the definition of v and y 

which, because of equation (6), may be simplified into 

It is clear now that in order to evaluate the rate of mass transfer one is first 
required to determine the quantity (aS/&&=,,, identically equal to the analogous 
term in pure heat transfer only if B -+ 0 and Xc = Pr, which as can be seen from 
equations (1) to (6) is a function of x, Xc, B and the geometry of the surface which 
fixes U(x) .  This cannot in general be accomplished analytically, and it is for this 
reason that the mathematical problem has in the past been attacked from two 
different points of view. One method (Livingood & Donoughe 1955; Eckert & 
Hartnett 1957; Stewart & Prober 1961) has dealt with the numerical solution of 
the boundary-layer equations for the special class of wedge-like surfaces, for 
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which it is possible to use the standard similarity transformations of boundary- 
layer theory to reduce the system to ordinary differential equations. This 
approach is without doubt of considerable value, but with rather obvious limita- 
tions on account of the presence of three independent parameters in the equa- 
tions: the wedge angle, the Schmidt number and B. Alternatively, it  has been 
suggested (Eckert & Lieblein 1949; Spalding 1954,1961; Spalding &Evans 1961) 
that the problem could be handled by various extensions of the well known 
approximate von Karman-Pohlhausen integral technique, but, in view of 
Merk’s (19593) remarks, one might expect such methods to be both cumbersome 
and, under certain conditions, relatively inaccurate. 

It is believed therefore that a more promising point of view would be to in- 
vestigate the solution of the boundary-layer equations in the asymptotic 
extreme of large interfacial velocities where the breakdown of the analogy 
between pure heat transfer and mass exchange would be especially pronounced. 
In  this way, first of all, the analysis would be carried out in the region of most 
interest where the effects of the interfacial velocity would be particularly signi- 
ficant. Secondly, if, as one would hopefully expect, it  were possible to derive a 
closed-form expression for the rate of mass transfer in this asymptotic limit of 
large interfacial velocities, then, judging from past experience, one might also 
be able to describe with reasonable accuracy the interval intermediate between 
the pure heat transfer result and the asymptotic one by means of a simple graph- 
ical interpolation. But a final and hardly a negligible advantage of the asymptotic 
method of solution is that it can also be extended to include both free convection 
and systems with variable properties, which, as is well known, are usually 
difficult to analyse theoretically even by approximate techniques. 

In  an earlier paper on the same subject (Acrivos 1960a) the author showed 
that in the limit of high suction, B -+ - 1, it  is indeed possible to derive such an 
asymptotic expression for general two-dimensional surface geometries and 
arbitrary but moderate Schmidt numbers and that the rate of mass transfer in 
the interval - 1  < B < 0 could well be described by interpolation. It is the 
purpose of the present article to extend this previous analysis and to investigate 
the solution of the laminar boundary-layer equations in the limit of high blowing 
where B --f 00. 

2. The solution for large Schmidt numbers 
The case Se 9 1 merits special consideration. This is so, not only because the 

Schmidt number is indeed very large for most liquid mixtures, but also because 
it is possible to solve the boundary-layer equations in the limit Xc + co for two- 
dimensional surfaces with an arbitrary geometry. Thus, as will be shown pre- 
sently, a closed-form solution which is applicable to many systems of practical 
interest can readily be obtained for all values of B. 

We recall first of all that, when Xc 9 1, the thickness of the diffusion boundary 
layer is indeed very small and that the resistance to mass transfer in the absence 
of any interfacial velocity effects is confined to a thin region near the wall where 
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a result which was first proposed by Page & Falkner (1931) and then proved 
rigorously by Morgan & Warner (1956). We next observe from equation (5) 
that, unless B or (aB/ay),=, are abnormally high, v + 0 as Sc -+ co at the surface 
and that the interfacial velocity cannot in general influence the velocity dis- 
tribution inside the momentum boundary layer, although it can admittedly 
alter the solution to the convection equation. Following then an established 
procedure (Acrivos 1960 b )  we begin by stretching the co-ordinates for the region 
inside the diffusion boundary layer by letting 

(9) 
y1= Sdy,  s c h  = P(x) yl, sc tv  = -B(g),l=,-id. 1 dP y;, 

where P(x) is kept proportional to the shear stress at the surface in the absence 
of mass transfer. These new variables are now substituted into equation (3) 
which becomes 

an expression which may be shown rigorously to be the correct asymptotic form 
of equation (3) as Sc -+ 00. 

Equation (10) may now be solved with ease. Let 

and 

so that 

and therefore, as derived by Merk (1 959 b )  for the flow past a flat plate, 

0'1 + ( - ~b + 3q)  e' = 0, (12) 

(Mickley, Ross, Squyers & Stewart 1954; Merk 19593; Spalding & Evans 1961), 
from which b may be determined as a function of B. 

This is shown in figure 1, together with the three asymptotic forms of equation 
(13) which are as follows: 

(14) 1 b -+ 64( 1 + B)-* 

b + 1.120 as B+ 0,  

b + 0.7425(Bb)* e-0'3849(Bb)t as B + CO, 

as B -+ - 1, 

where b is defined by equation (lla). Of particular interest is the fact, clearly 
shown in figure 1, that, as anticipated in the introduction, the transition from 
one asymptote to the other is a smooth one, and that if instead of equation (13) 
only the three asymptotes had been made available it would have been indeed 
possible merely to draw in, with good accuracy, the curve representing b as a 
function of B. Another result of considerable practical value is that although 
the third term of equation (14) is strictly speaking exact only if B + 03, it  is, 
as can be seen from figure 1, of acceptable accuracy even when B is as low as 2, 
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which, as will be shown later on in this paper, is fortunately not an isolated 
property of the solution for large Schmidt numbers, but a more general character- 
istic of such fluid-mechanical systems. 

10 
8 

6 

4 

2 

i.8 

06 

04 

02 

0.1 

1 + B  
FIGURE 1. Forced convection for large Sc;  b is defined by equation (lla). 

3. The solution for B -+ co and for moderate or small Schmidt numbers 
The previous section has dealt with the high Schmidt number solution and 

has been restricted bo cases where the interfacial velocity was always so small 
that its effect on the velocity distribution in the momentum boundary layer 
could be neglected. This is so only if the Schmidt number is sufficiently large that 

for all B of interest.? It is clear, however, both from the above and from equation 
(5) ,  that if Sc is moderate or small then the interfacial velocity can indeed be 
large and that its influence on the velocity distribution cannot be overlooked. 

This problem, which is of considerable practical interest since Sc is around 
unity or smaller for most gaseous mixtures, was analysed in an earlier paper 
(Acrivos 1960a), where it was shown that, for arbitrary U(x) ,  the laminar 
boundary-layer equations could be solved in a closed form for B 3 - 1 and for 
arbitrary but moderate 8c.j: It is the purpose of the present section to complete 
this theoretical study and to consider the asymptotic solution as B -+ 03. 

First of all, the boundary-layer equations are rearranged by using the trans- 
formations proposed by Meksyn (1948), by Gortler (1957) and by Merk (1959a). 
Thus we write 

BbSc-* g 1 (15) 

( E U ( z ) d z ,  7 = Uy(Sc)-*, A = Z(d(1n U ) / d ( ,  (16) 
!ox 

t It should be kept in mind that: lim [ lim j ]  + lirn [ lim j]. 

$ The last restriction is necessary because: lim [ lim j] * lim [ lirn j]. 
B+m Sc+m Se+m B+m 

Sc-tm 3+-1 B-t-1 Sc+m 
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and expand u, v and B as follows: 

These, when substituted into the original boundary-layer equations, simplify to 

f: + fo f ,  +A( 1 - fi2) = 0, 

tg + scfo e;, = 0, 

with the following boundary conditions: 

(19) 
at  7 = 0: eo = 1, fi = 0, fo = -a = (B/Sc)Bh; 

at 7 =a: 19, = 0, $i = 1. 

It should be noted of course that, as shown by Merk (1959a), additional 
expressions must be written down for the remaining functions f,, B,, etc., but 
since the analysis quickly becomes far too complicated, we shall content ourselves 
with the solution of equations (18) and (19). Strictly speaking, therefore, the 
present development is not as general as the earlier one for B -+ - 1 (Acrivos 
1960a), since it is exact only for wedge-like surfaces for which A is constant, 
proportional to the wedge angle. Fortunately, however, this limitation is not 
a t  all as serious as it might appear at first glance because it has been established 
(Merk 1959 u)  that the wedge-type simplification to the boundary-layer equations 
as used above, does lead to reasonably reliable results for the rate of pure heat 
transfer, except near the separation point where, on account of the fact that the 
location of separation cannot be predicted with any great accuracy by this 
approximate procedure, the approximation is rather poor. It is felt, though, that 
in the case of mass transfer with large blowing the overall agreement between 
the results of the wedge-type method and those of the exact solution should be 
improved somewhat, especially since the location of separation, which as B -+ co 
moves closer and closer to the point of minimum pressure, can now be determined 
with certainty. 

Let us begin then with equations (18a) and (19), keeping in mind that we are 
seeking their solution as a - f c o .  This appears easy a t  first, since the trans- 
formations 

z = ?/a and fo = -cc+a$(z) 

reduce equations (18a) and (19) to 

(20) 

CC-~$”’ - (1 - $) q5” + A( 1 - q5’2) = 0, 

$(O) = $’(O) = 0, $’(a) = 1, 

which seems to be ideally suited for a perturbation solution. Unfortunately, 
however, the perturbation is of a singular type, since no matter what the value 
of a, one would expect the term q5“’ a-2 to be larger than (1 - q 5 )  +’’ if $ were close 
enough to unity. It follows therefore that the equation will have to be attacked 
by a singular perturbation technique, analogous to the one employed by Kaplun 
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& Lagerstrom (1957) and by Proudman & Pearson (1957) in their successful 
solution of certain classical fluid-mechanical problems. 

It is for this purpose that the variables are once again transformed by letting 

h =_ 1 - q5 and w G 1 - (dh /dz )2 ,  where dh /dz  < 0, (22) 

so that equation (21) is changed into 

with the boundary conditions w(1) = 1, w( -00) = 0. Proceeding now according 
to a well established rule (Proudman & Pearson 1957), we first construct an inner 
perturbation expansion for w which will satisfy the boundary condition o( 1) = 1, 
but not necessarily the requirement o( - 00) = 0. This can be accomplished in a 
straightforward manner by letting 

w = w0+a-2w1+ ..., (24) 

and then substituting into equation (23). It is found that 

h(do,/dh) - 2Rw, = 0, h(dw,/dA) - 2Rw, = -.( 1 - wo)& (d200/dh2), etc., 

from which it readily follows that 

It is immediately obvious at this point that equation (25) does not satisfy the 
boundary condition o( - co) = 0. Nevertheless, the function 

w=h2" for O < h < l ,  w = O  for h<O 

would indeed be a perfectly acceptable solution to equation (23) if a were suffi- 
ciently large, except for the discontinuities in the derivatives when A N 0. This 
would mean then that whereas it is permissible to neglect the viscous term in 
equation (23) throughout most of the boundary layer if a $- 1, there is clearly an 
important shear layer of dimensions a-l in the A-co-ordinate which is located, 
not a t  the surface as is usually the case with such systems, but at an appreciable 
distance from it where w N 0. We conclude therefore that the appropriate outer 
expansion for the function-denoted here as Q(t)-which would satisfy the 
boundary condition Q( - co) = 0, would be of the form 

Q(t)  = C,(a) QZ,(t) + C,(a) Q,(t) + . . ., 
c (a) 

a+w a-tm C,(a) 

(26) 

where t = -ah, lim C,(a) = 0, lim 2 = 0, etc. 

It is clear then, from equations (23) and (26), that if a is large enough Ql(t) must 

d2Q, dQ satisfy the equation 
----+t-1-22RQ1 = 0, 

a t2  at 

which fortunately has the simple closed form solution 
p. 116): 

Q, = stg e-7212 (7 - t)2* d7. 

(27) 

(ErdBlyi et al. 1953, vol. 11, 

(28) 
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This must finally be matched to the inner expression as given by equation (25) 
in such a way that lim !2 = limw. For a 9 1, however, 

t+-m A-0 

IR -+ Cl(a) ((27r)t (ah)2A + (27r)t A(2R - 1) (ah)2n-2 + . . .} as t = -ah + - 00, 

while w+h2A+A(2h- l )h2h-2/a2+. . .  as 0 

so that the matching is exact for large a if 

C1(a) = (27g-la-24 (29) 

We now turn our attention to the convection equation, equation (18 b),  which, 
in the new variables h and z, becomes 

whence - 

This may be evaluated in the following manner. First of all, 

where, by definition, 

Because of equations (22), (28) and (29)) however, 

h(z*)  = 0. (33) 

&)z=z* = - 1 t-O(a-2") 
d h  
dz 
- E -(l-Q)&, 

and in general - O(a-2h-l+%) for n 2 1. 

Therefore, with the substitution 7 =_ za, equation (31) rearranges into 

since 7" = az* 9 1 if a 9 1. 

equation (34). First of all, 
It remains then to determine the exponential term on the left-hand side of 

where, for h > O(l/a) ,  o is given by equation (25)) whereas for h < O(l/a) 
equation (28) must be employed. This means that 

hdh h d h  
I =  
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which can be simplified still further since 

h d h  + o(a-4) 

d h  + O ( r 4 )  + O( < 

Finally it can be shown that the third and fourth terms of the above expression 
are both of order a-2A-z so that 

where, from equation (251, 

wo = h2" and w1 = 2A(2A - 1) hZA dx. 

The first term on the right-hand side of equation (35) can of course be easily 
integrated, while, as explained in the appendix, the second term can also be 
expressed in terms of tabulated functions. The result is s1 hw,dh (2A-1) hdh - &F(l+A-l)  and 

[Y( 1 + A-I) - Y (31, - -___ s 0 ( l - w o ) t  - 2 r(++A-l)  o (I-w0)% (2-A) 

where Y is the logarithmic derivative of the gamma function. One can conclude 
then from equation (34) and the above that 

+ [Y( 1 + A-l) - 0.036481 + O ( r k ) ,  (36) 
(2 - A) I1 

with k: = min (2A, 2), (37) 

while, by combining equations (7) ,  (16) and (36)' one can derive the asymptotic 
expression for the rate of mass transfer: 

(38) 
where al, defined as 
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is given implicitly,with 
a, = B, exp ( - a:) (39) 

)* exp { - sc [Y( 1 + A-1) - 0.036481). (40) 
r(i + ~ - 1 )  

4 .Jn r (4 + A-1) (2 - A) 
by B, = B( 

Equation (38) then provides us with the desired asymptotic result in a sur- 
prisingly simple form. Of particular interest is the fact that, had the viscous part 
of equation (21) been completely neglected, equation (38) would still have held 
except that the exponential factor in equation (40) would have been missing. 
As this term is rather close to unity in the general case, one can infer that the 
viscous effects will become progressively less important at high blowing which 
is of course to be expected, since, with increased blowing, the shear layer is 
gradually displaced from the immediate neighbourhood of the surface. 

FIGURE 2. Stagnation-flow forced convection; j ,  and B, 
are defined respectively by equations (38) and (40). 

It remains now to compare equation (38) with some exact numerical values 
(Livingood & Donoughe 1955; Eckert & Hartnett 1957; Stewart & Prober 1961). 
Typical results are those for the stagnation flow (A = 1) with& = 1 andareshown 
in figure 2 together with the asymptote derived above. It is immediately apparent 
once again that, as with the large Schmidt number solution reported in 9 2 and 
presented in figure 1, the transition from the pure heat-transfer result into 
equation (38) is a smooth one, that the asymptotic expression for the rate of 
mass transfer describesfairly well the exact function even for relatively low values 
of B and that, for this example at any rate, equation (38) is reasonably accurate 
for B, > 1 or B > 3. A similar conclusion can also be reached with respect to 
the system A = $, Sc = 0.7, which is shown in figure 3. 

We close this section by presenting briefly the solution to equations (1 8) and 
(19) for Xc -+ 0. It is realized of course that, contrary to pure heat transfer, the 



348 Andreas Acrivos 

case Sc -+ 0 is not of too much practical interest because the Schmidt number 
appears to be always higher than about 0.2 for physical systems. Nevertheless, 
since, as we shall show below, equations (18) and (19) can indeed be solved in 
closed form for arbitrary B if Sc -+ 0, the solution thus derived can be of con- 
siderable theoretical value in that it can provide us with a quantitative descrip- 
tion of the mass-transfer rate function j ,  in the interval between the pure heat- 
transfer analogy and the B -+ 00 asymptote. 

The chief characteristic of the Xc -+ 0 solution to equations (18) and (19) is 
that, although a -+ co for all B > 0, aJSc remains, as will be presently demon- 

0 1  0 2  0.4 0.6 0 8  1 2 4 6 8 10 20 40 60 

Bl 

FIGURE 3. Forced convection from a wedge at angle 8n; j ,  and B,  
are defined respectively by equations (38) and (40). 

strated, a unique function of A and B. Let us for the moment then assume that 
a -+ 00 for Sc -+ 0. It follows from equations (25) and (31) that 

where h is given exactly by 

Therefore 
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Consequently, if a, is defined as in equation (38a) and B, as in equation (40) with 
the exponential term missing, the more general form of equation (39), valid for 
all a, but restricted to Xc < 1, is 

where 

Equation (39a) reduces of course to equation (39) as a, j. co, while, for a, -+ 0, 
it simplifies to 

El = a?exp(a:) 

The function a,(B,) for A = 1 is shown plotted in figure 4. It is seen that, as was 
the case with the previous examples, the transition from one asymptote to the 
other is smooth and that equation (39) becomes accurate when B, > 1, a result 
which, naturally, further strengthens our argument about the usefulness of our 
asymptotic solution. 

4. The solution for A = 0 

Since the error in the asymptotic expression given by equation (38) is 0(01-~~) 
if A < 1, it is obvious that the mathematical development presented in the 
previous section will be applicable only so long as the pressure gradient remains 
favourable and A > 0. It should be expected on the other hand that, as A +- 0, 
equation (38)  would become less and less accurate for moderate B, and that for 
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A = 0 a completely different solution would then hold. This important special 
case, which was first studied in considerable detail by Mickley et al. (1954), is 
discussed briefly below. 

When A = 0, equation (18 a )  reduces to 

with 1 f”‘ +ff” = 0, 

f(0) = -a,  f’(0) = 0, f’(Oo) = 1, 

which has already been solved numerically (Emmons & Leigh 1953). An inter- 
esting and rather unique property of this solution is that the boundary layer 
becomes detached from the surface when a = 0.5758, which means that, because 
of equations (7), (16) and (19), 
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% 0 1  
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0.1 0 2  0 4  0.6 0.8 1 2 4 6 8 10 20 40 60 

B 

FIGURE 5. Forced convection from a flat plate. 

The behaviour of the function 42jLlpDB for Sc = 1, as obtained from the 
Emmons & Leigh (1953) numerical calculations, is presented in figure 5 together 
with the appropriate asymptotes. Again, the transition from the pure heat- 
transfer result into the large blowing asymptotic expression is smooth, although 
equation (42) becomes in this case accurate only if B > 10, which is somewhat 
larger than the corresponding value for B in the earlier examples. 

5. Mixtures with variable properties 
The assumption of constant fluid properties, which has been used up to now 

in our development, is in general correct only so long as B N 0, for under such 
conditions the composition of the fluid obviously remains relatively constant 
throughout the boundary layer. In  the limit B + c o ,  however, this may not 
necessarily be the case. Thus, in gases for example, the mass density is for 
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practical purposes directly proportional to the molecular weight, which means 
that, if the components of the mixture are widely different in molecular size, 
the variation of p,  as well as of p and D ,  across the boundary layer may indeed 
be appreciable and cause a considerable error in the predictions of the constant- 
property model. We shall therefore consider here briefly the variable-property 
system and outline a method by which the results arrived at  previously may be 
extended. 

Let us then begin with the appropriate two-dimensional boundary-layer 
equations (Lees 1956; Acrivos 1960a) analogous to equations ( 1 )  to ( 3 ) :  

a a -  - (PU)  + - (pv) = 0, ax a Y  

in which the dimensionless variables v and y are defined in terms of the fluid 
properties at the surface, and where 

P = PlP,? pa = P*O/Ps, = DlD,, P = PIPS. 

Our analysis will be limited to systems with moderate or low Schmidt numbers 
since the case S c  9 1 may be handled, without difficulty, by a straightforward 
extension of an existing procedure for solving a somewhat related heat transfer 
problem (Acrivos 1960b). p m  is taken as constant. 

Equations (43)  are once again rearranged by the introduction of the new 
variables, similar to those defined by equations (1 6 )  and ( 17), to give 

It can now be shown that if, as was explained earlier in connexion with equation 
(18) ,  the functions f and H are assumed to be independent of < as a first approxi- 
mation, equations (43) and (44)  may be combined to give 

where p ,  D and ,ii are in general known functions of H .  The boundary conditions 
are : 
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As before, the solution to equations (45) in the limit a -+ co will be obtained 
by a singular perturbation expansion. We note first, however, that in the so- 
called ‘inner’ region where both the molecular diffusion and shear effects are 
negligible, H E 1, and therefore p = ,ii = 1. One can conclude then that the 
‘inner’ perturbation expansion of equation (45) is essentially the same as that 
of equation (lsa), which means that, in view of equation ( 2 5 ) )  

where 

The function given by equation (47) must now be matched, as explained earlier, 
to an ‘outer’ perturbation solution which is obtained as follows. Let 

r1 2 7 - r”, 
where, by definition, /o’*pf‘a7 = a. 

This means that, in the new variable 7,) equations (45) become 

and 

(49) 

(49 a )  

where the boundary conditions are to a first approximation as a + co: 

} (50 )  
at 7, = -a, f ‘ =  1, H = 1; at 7, = 0, f = 0; 

at 7, = co, f ’  = p;*, H = 0; 

on account of the required matching between the solution to equation (49) and 
the function given by equation (47). Clearly now, equations (49) and (50)) which 
do not contain either a or B as parameters, must in the general case be solved 
numerically since an analytic solution does not exist. We shall show, however, 
that the general form of equation (38) for the rate of mass transfer is still retained 
even though the fluid properties may be arbitrary functions of composition. 

We note first of all from equation (49a) that 

On the other hand, q* +co as a+co and, in view of the results previously 
obtained, 

with 
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where, it should be noted, E will have to be computed from the solution of equa-
tions (49) and (50). It follows, therefore, that equation (38) can be generalized
for a variable-property fluid into( vs )I 4

t
9 (I 2 0 xUdx  )I( J7r r( 1 + 4

-p,D, u,L
A-‘)

Pam U(x) 2Scl?($+A-1) 1
= LqB,) + O(c+), (53)

where, as before, E = min (2R, 2) while CZC~  is given implicitly in terms of B, by

with a, = B,exp (-a:)

B, = -~),,-,(~)“~(4~~~~~-~~h(~~~~dO)iil

a [Y( 1 + A-l) - 0.03648]-  S$] . (54)
Pm

We can clearly see then that, although no analytic solution can be obtained in
the general case since the definition of B, involves two parameters, H’(0) and E,
which must be evaluated numerically from equations (49) to (51),  the asymptotic
expression for the rate of mass transfer with B B 1 retains exactly the same form
as equation (38) even when the fluid parameters are arbitrary functions of
composition.

6. Free convection in an isothermal system
Although forced convection is undoubtedly the most common mode of mass

exchange under practical conditions, there are nevertheless many instances where
the transfer of matter by natural convection is the predominating factor. The
present analysis will therefore conclude with a discussion of mass transfer by
free convection, under laminar boundary-layer flow conditions, in the case
where BB 1.

We note first of all that in natural convection the fluid motion is induced by
the buoyancy forces, which are in turn generated by a variable density field.
Density variations, on the other hand, may be caused by either temperature or
composition gradients in the fluid, so that a general investigation of free-
convection mass transfer will have to consider the simultaneous effect of momen-
tum, mass and heat exchange between a stationary surface and the surrounding
medium. In the interest of simplicity, however, we shall limit ourselves to an
isothermal system with constant fluid properties-apart from the density in
the buoyancy term-because, as can be verified without much difficulty, the
results to be derived below may be generalized in the manner already shown for
the forced convection case.

Under these restrictions, then, we have that (Schlichting 1960; Acrivos 196Oc)

23 Fluid Mech. 12

au au
&+y=o,

au au akuz+vay = G(x)~+>~,

a0 ae 1 a20
(57)
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where, again, both dimensionless and stretched laminar boundary-layer co- 
ordinates have been used. These are defined exactly as in forced convection, 
except that 

where g is the gravitational acceleration and p is the expansion coefficient to be 
obtained from 

In  addition, G(x)  = sine, where e is the angle between the normal to the surface 
and the force of gravity. 

u m  = {&hw? - W}*, (58) 

PmlP = 1 +PO. (59 )  

It is quite clear now that, if we formally set 

G ( x )  = UdUldx ,  (60 )  
equations ( 5 5 )  to (57) become surprisingly similar to the forced convection 
equations (1) to ( 3 ) .  Therefore, except for a few minor modifications, the solutions 
of the previous sections can be made to apply to this free-convection problem. 

(a) Solution for  small or moderate Sc 

Equations (55)  to (60)  may be rearranged once again by using the transforma- 
tions given by equations (16 )  and (17)) and by assuming that A is relatively 
independent of g. This leads, as a first approximation, to 

f”’+ff”+A(O-f ’2)  = 0, ( 6 l a )  

8”+SCfO’ = 0, (61b)  

(62 )  

with the boundary conditions: 

1 at 7 = 0, 8 = 1 ,  f‘ = 0, f E -a  = (B/Xc)O’; 

at y =a, 0 = 0, f ‘ =  0. 

This is a system of equation almost identical to equations (18 )  and (19)) for which 
up to now only a few solutions have been made available with B $: 0 (Acrivos 
1960a; Eichhorn 1960). The B - t a  asymptote may, on the other hand, be 
obtained readily by simply following the steps which were outlined in $ 5 .  In 
other words, since 0 = 1 in the ‘inner’ region, the ‘inner’ perturbation expansion 
for equation ( 6 l a )  is again given by an expression similar to equations (25) 
and (47 ) :  2 h (  2 h  - 1 )  h2A 

a2 

1 ( 1  - x2*)* 
dx,  -2-- 

1 -f’2 = h2A + 

where h = -f /a,  while, in the ‘outer’ or f N 0 region, 

with boundary conditions : 

f ’ =  1 ,  8 =  1 a t  ql = -a; 
f = O  at q l = O ;  f ’ = O = O  at y l=a .  

Therefore, by comparing our results with those of the previous section we can 
immediately conclude that, in the limit B + co: 
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xexp(  - S ~ ~ [ Y ( l + h - ~ ) - O - O 3 6 4 8 ] - S c E }  ( 2  - A) (66) 

and 

and where both E and (d8/d7,),,=, must in general be obtained numerically from 
equations (63) and (64). 

0 1  0 2  0.4 0.6 08 1 2 4 6 8 10 20 40 60 

B 

FIGURE 6. Free convection for large Sc; b is defined by equation (69). 

( b )  Solution for Sc 9 1 

It remains now to present the solution for large Schmidt numbers which for- 
tunately can be made to hold for surfaces of arbitrary geometries. This is so 
because the inertia terms of the equation of motion may be neglected in the 
limit Sc -+ co (Morgan & Warner 1956), which in turn makes it possible to apply 
a similarity transformation to the free-convection equations and reduce them to 
a pair of ordinary differential equations (Acrivos 1960~). Thus, if 

u = G* (& JoxGi d x y  f ’(7) , where 7 = yGf 3Sc 4 [ I JoxG4axl” 

and if the inertia terms of equation (56) are omitted, then 

f/ / /  + e = 0, 8” +fe’ = o 
with boundary conditions: 

f’(o) = 0, e(o) = 1, f ( o )  = se‘(o), f”(a) = 0, e(a)  = 0. 
23-2 
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It follows, therefore, that the quantity 

is a unique function of B which, as can be shown in a straightforward manner, 
has as its two asymptotes: 

b = 0-540 for B-tO 

and b = 0-407(Bb)fexp{-0*541(Bb)$) for B 9 1. (70) 

Again, as can be seen from figure 6, these two expressions describe rather 
accurately the behaviour of the function b, and that, as was the case with the 
previous examples of this analysis, the asymptotic expression may be used to 
represent b even when B is as low as 3. 
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Appendix 
We wish to evaluate 

Let z = A2A so that 

However [see Morse & Feshbach 1953, p. 592, eq. (5.3.19)], 

where F is the hypergeometric function. On the other hand (see Erdhlyi et al. 

1953, p. lo5)' F(u, b, c, z )  = (1 - z)c-a--b P(c - a, c - b, c, z )  

and therefore 

This may be simplified still further by recalling that (Erdhlyi et al. 1953, p. 116) 

P(a,b ,c , z )  = 

which means that, since 

e-bt (1 - e-t)c--b--l(I - z e-t) dt, 

et 
(l-xe-t)-adz = ----[l-(l-e-t)l-a],  

1 -u  
W 1 

{( 1 - e-t)+ - (1 - e-t)l/*} dt. 

C 
' = (2A)(2-A)IO 
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This last integral may finally be determined as follows. We note from a table of 
integral transforms (Erdblyi et al. 1954, p. 14) that 

from which we readily obtain 

where 
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